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Abstract. Feature construction can improve the classification perfor-
mance by constructing high-level features using the original low-level
features and function operators. Particle swarm optimisation (PSO) is
an powerful global search technique, but it cannot be directly used for
feature construction because of its representation scheme. This paper
proposes two new representations, pair representation and array repre-
sentation, which allow PSO to direct evolve function operators. Two PSO
based feature construction algorithms (PSOFCPair and PSOFCArray)
are then developed. The two new algorithms are examined and compared
with the first PSO based feature construction algorithm (PSOFC), which
employs an inner loop to select function operators. Experimental results
show that both PSOFCPair and PSOFCArray can increase the classifi-
cation performance by constructing a new high-level feature. PSOFCAr-
ray outperforms PSOFCPair and achieves similar results to PSOFC, but
uses significantly shorter computational time. This paper represents the
first work on using PSO to directly evolve function operators for feature
construction.

Keywords: Particle swarm optimisation · Feature construction · Clas-
sification

1 Introduction

In classification, the quality of the data that is defined by a set of features is an
important factor. A classification algorithm usually can not achieve good clas-
sification performance using the original feature set. Therefore, feature manipu-
lation techniques are proposed to improve the quality of the feature space, two
of which are feature selection and feature construction [11]. Feature selection is
to select a subset of original features to reduce the dimensionality and improve
the classification performance [7]. Feature construction is a means of enhanc-
ing the quality of feature space by constructing new high-level features [6,7].
The constructed feature(s) should be able to discover the hidden relationship
between the original low-level features, which is particularly useful when the
original features could not provide enough information for classification. This
work will mainly focus on feature construction for classification.
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A constructed feature is usually a function of original low-level features and
mathematical operators. Therefore, the selection of the original features and
function operators is the key issue in feature construction, but it is a difficult
problem due mainly to the large search space. The size of the search space grows
exponentially with the number of original features and the candidate operators.
As a result, feature construction approaches often suffer from the problem of
being stagnation in local optima and computationally expensive. Therefore, a
global search technique is needed to develop an effective and efficient feature
construction algorithm.

Evolutionary computation (EC) techniques are a group of powerful arguably
global search algorithms, which have been successfully applied to many areas [3].
Most of the EC based feature construction approaches rely on genetic program-
ming (GP) due to its tree-like representation [6,9,10]. Particle swarm optimisa-
tion (PSO) is a powerful EC technique and is argued to be computationally less
expensive than GP [3]. PSO has been used for feature selection [3,14,16], but
there is only one work successfully using PSO for feature construction [17]. How-
ever, since the original representation in PSO does not allow it to evolve nominal
values, the function operators in [17] are selected by a time-consuming inner loop
rather than evolved by PSO itself. Therefore, in order to further investigate the
use of PSO for feature construction, a new representation scheme needs to be
developed to allow PSO itself to select function operators during the evolutionary
process.

1.1 Goals

The overall goal of this paper is to propose a new representation scheme in PSO
to develop a PSO based feature construction approach to binary classification. To
achieve this goal, we develop two new representations named pair representation
and array representation, based on which two PSO based feature construction
algorithms are developed. We expect each new algorithm to construct a single
high-level feature, which can benefit the classification performance either being
used solely or combined with the original features. The two proposed algorithms
are examined and compared with the first PSO based feature construction app-
roach (PSOFC) [17] on seven commonly used binary classification problems.
Specifically, we will investigate:

– whether PSO using the pair representation can automatically construct a
new high-level feature to improve the classification performance either by
the new feature itself or combined with the original features;

– whether PSO using the array representation can successfully construct a new
high-level feature to improve the classification performance and outperforms
the pair representation; and

– whether the two new algorithms can use a shorter computational time to
achieve similar classification performance to PSOFC.
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2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO stimulates social behaviours of birds flocking and fish schooling [5,13].
In PSO, each candidate solution is encoded as a particle. A PSO algorithm
starts with randomly initialising a population or swarm of particles. During the
evolution of PSO, all the particles move or “fly” in the search space to find the
optimal solutions. For any particle i, a vector xi = (xi1, xi2, ..., xiD, ) is used to
represent its position and a vector vi = (vi1, vi2, ..., viD, ) represents its velocity,
where D is the dimensionality of the search space. During the search process,
each particle can remember its best position visited so far called personal best
(denoted by pbest), and the best previous position visited so far by the whole
swarm called global best (denoted by gbest). Based on pbest and gbest, PSO
iteratively updates the xi and vi of particle i to search for the optimal solutions
according to Equations 1 and 2.

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (2)

where t shows the tth iteration. d ∈ D shows the dth dimension. w is the inertia
weight, which can balance the local search and global search of PSO. c1 and c2 are
acceleration constants. ri1 and ri2 are random constants uniformly distributed in
[0, 1]. pid and pgd denote the values of pbest and gbest in the dth dimension. vt+1

id

is limited by a predefined maximum velocity, vmax and vt+1
id ∈ [−vmax, vmax].

2.2 Related Work on Feature Construction

Feature construction has a long research history and a large number of fea-
ture construction approaches have been developed [7]. Based on whether a clas-
sification algorithm is included in the evaluation procedure, existing feature
construction methods can be broadly divided into two categories, which are
wrapper approaches and filter approaches [7]. In wrapper approaches, a clas-
sification algorithm is used to evaluate the classification performance of the
constructed features. A filter feature construction process is a separate, inde-
pendent preprocessing stage and the new features are constructed before the
classification algorithm is applied to build the classifier [6]. Different filter and
wrapper feature construction methods have been developed and more details can
be seen in [6,7,11]. Due to the page limit, this section will briefly review typical
evolutionary feature construction approaches only.

In evolutionary approaches to feature construction, most of the work relies
on GP due to its tree-based representation, which can naturally evolve functions
of features and mathematical expressions [6]. Muharram and Smith [9] devel-
oped two fitness functions in GP for feature construction, which are based on
information gain and gini index, respectively. Experimental results show that
the classification performance of four different classification algorithms can be
be improved by using the constructed features. Krawiec [6] extends the standard



New Representations in PSO for Feature Construction in Classification 479

GP for feature construction framework aiming to preserve the valuable compo-
nents in GP individuals, which may be destructed by mutation or crossover
operators. Neshatian at al. [12] develop a GP based filter feature construction
algorithm, where the class dispersion and entropy are used to form the fitness
function. Experiments show that these algorithms can improve the classification
performance by constructing new high-level features. Later, Neshatian at al. [10]
develop a GP based filter system to construct multiple high-level features. New
features are constructed by GP with an entropy-based fitness function to max-
imise the purity of class intervals. Constructing multiple features is achieved
by using a decomposable objective function. The experiments show that the
constructed features can significantly increase the classification performance.

2.3 PSO for Feature Manipulation

PSO has been used to solve problems in many areas [3,14–16]. In terms of feature
manipulation, PSO has been successfully used for feature selection, but there is
only one existing work on PSO for feature construction [17]. Typical PSO based
manipulation methods will be reviewed in this section.

Marinakis et al. [8] propose a wrapper feature selection approach based on
PSO and K-nearest neighbour (KNN) for a real-world medical diagnosis problem
called Pap-smear cell classification. The results show that this method removes
around half of the features and achieves good classification performance. Azevedo
et al. [1] proposed a wrapper feature selection algorithm using PSO and support
vector machine (SVM) for personal identification in a keystroke dynamic sys-
tem. However, the proposed algorithm obtained a relatively high false acceptance
rate, which should be low in most identification systems. Unler and Murat [14]
develop a modified PSO algorithm for feature selection. In the proposed algo-
rithm, whether a feature is chosen or not depends on two criteria, which are
the likelihood calculated by PSO and the relevance of the feature to the already
selected features. The experiments show that the proposed algorithm achieves
better performance than scatter search and tabu search algorithms. Xue et a. [16]
proposed a PSO based multi-objective feature selection approach. Experimental
results show that the proposed approach outperforms other three well-known
EC based multi-objective feature selection algorithms.

Existing works have shown that PSO can be successfully used for feature
selection. However, there is only one existing work to investigate the use of PSO
for feature construction [17]. Xue et al. [17] apply PSO to feature construc-
tion (PSOFC) to construct a high-level feature, where PSO is used to select
original features and a inner loop is used to exhaustively evaluate all the can-
didate operators to search for an operator for each of the selected features. The
experiments have shown that PSOFC can successfully construct a high-level
feature to improve the classification performance of three different classification
algorithms, i.e. KNN, decision trees (DT), and näıve bayes (NB). However, the
operators are not evolved by PSO itself, but selected by the inner loop, which
is computationally expensive, especially when the number of features is large.
This is due mainly to the major limitation of PSO in feature construction, i.e.
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the standard representation does not allow PSO to evolve function operators.
Therefore, a new representation scheme is needed in PSO to evolve function
operators to further investigate its potential in feature construction.

3 Proposed Approaches

In order to address the major problem in PSO for feature construction, we
propose two new representations, which are the pair representation and the
array representation. These two new representations allow PSO to directly evolve
function operators for feature construction.

3.1 Pair Representation

In this representation, the position shows a candidate solution of the problem,
i.e. a constructed feature. The dimensionality of each particle/search space is
n, where n is the total number of features in the dataset. Different from the
traditional representation in PSO, the meaning/function of each dimension in
the pair representation is two-folded. The first one is the probability of a feature
being selected and the second one is the operator chosen for this feature if it
is selected. By using the pair representation, a PSO based feature construction
algorithm is proposed and named PSOFCPair.

F1 O4, F4O3, F3O2, F2 ... On, FnOn-1, Fn-1

x1 x4x3x2 ... xnxn-1

Fig. 1. Pair Representation

Fig. 1 shows a particle in the pair representation. xi is the value of a particle
in the ith dimension with i ∈ [1, n]. Fi represents feature i and Oi represents the
operator for feature i. xi ∈ [0, 1] represents the probability of Fi being selected.
A position determines the selected features and operators, which is regarded as
a constructed feature. The selected features and operators are read from left to
right and used as input to the feature construction function. The function starts
with the first selected feature, followed by a number of pairs of an operator
and a selected feature, and ends with the last selected feature. For example, a
constructed feature can F = F1 ∗ F3 + F5 − F10. Since there is no need to put
any operator before the first selected feature, x1 in the position only determines
whether F1 is selected or not. Note that the order of features in the dataset will
not significantly effect the performance of the constructed feature because PSO
is expected to automatically evolve the solutions during the evolutionary process
and overcome the influence of the features being ordered.
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F1 O3 F2O2 On-1...F3 Fn-1 FnOn

x1 x4x3x2 x(2n-4)...x5 x(2n-3) x(2n-1)x(2n-2)

Fig. 2. Array Representation

To determine whether a feature is selected or not, a threshold θ ∈ [0, 1] is
used here. If xi > θ, Fi is selected. Otherwise, Fi is not selected. If Fi is selected,
an operator is needed to select for Fi according to the value of xi. Given Fi

being selected, θ < xi ≤ 1. According to the number of candidate operators,
the interval of [θ, 1] can be divided into a number of sub intervals. The operator
is selected according to which sub interval xi belongs to. For example, if there
are four candidate operators, three numbers (α1, α2, α3) can be used here to
divide [θ, 1] into three sub intervals. If θ < xi < α1, the first operator is selected.
If α1 ≤ xi < α2, the second operator is selected. If α2 ≤ xi < α3, the third
operator is selected. If α3 ≤ xi ≤ 1, the fourth operator is selected.

3.2 Array Representation

The pair representation could allow PSO to be directly used for feature con-
struction without increasing the dimensionality of the search space, but using
one variable to determine the selection of both features and operators may limit
the search of the their best combination. Therefore, we propose an array rep-
resentation, where the feature selection and operator selection are determined
separately. By using the pair representation, a PSO based feature construction
algorithm is proposed and named PSOFCArry.

Fig. 2 shows the position of a particle in the proposed array representation.
The dimensionality of the particle is 2n − 1, where n is the total number of
features in the dataset. A dimension is used to determine the selection of either
the feature or the operator. The (2 ∗ i − 1)th dimension determines whether Fi

is selected or not, where i ∈ [1, n]. The (2 ∗ i − 2)th dimension determines which
operator is selected for Fi, where i ∈ [2, n] since the first feature does not need
any operator. Meanwhile, the operator i is selected only when Fi is selected.

The threshold θ is also used in the (2∗i−1)th dimension to determine whether
Fi is selected or not. θ performs the same way as in the pair representation.
According to the number of candidate operators, the interval [0,1] is divided
into a number of sub intervals. An operators is selected according to which sub
interval xi in the (2 ∗ i − 2)th dimension belongs to, which is the same as in the
pair representation.

3.3 Pesuode Code of the Proposed Approaches

Both PSOFCPair and PSOFCArry follow the basic steps in PSO and each of
them produces a single high-level feature. An important step in PSOFCPair and
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Algorithm 1. Pseudo-code of PSOFCArry and PSOFCPair
begin

split the instances into a Training and a Test set;
initialise x and v of each particle;
while Maximum Iterations has been not met do

construct a new high-level feature for each particle according to the Pair
or Array representation;
calculate the classification performance of the constructed high-level
feature;
for i=1 to Swarm Size do

update the personal best (pbest) of particle i;
update the global best (gbest) of particle i;

for i=1 to Swarm Size do
for d=1 to Dimensionality do

calculate vi according to Equation 2
calculate xi according to Equation 1

calculate the classification performance of the constructed feature on the
test set using 0 as the threshold or using other classification algorithms;
return gbest, the training and testing classification performance.

Table 1. Datasets

Dataset No. of Features No. of Classes No.of Instances
Australian 14 2 690
Ionosphere 34 2 351
WBCD 30 2 569
Sonar 60 2 208

Hillvalley 100 2 606
Musk1 166 2 476
Madelon 500 2 4400

PSOFCArry is the evaluation of a particle, which is shown in Line 1. In both
PSOFCPair and PSOFCArry, the algorithm first constructs a new high-level
feature according to the low-level features and the operators selected by the
particle. The fitness of the particle is evaluated by the classification performance
of the newly constructed high-level feature. Since binary classification problems
are considered here, we use 0 as the threshold for the constructed feature to
determine an instance to be class 1 or class 2. The purpose of using 0 as the
threshold for classification rather than using a classification algorithm is to speed
up the classification (i.e. the fitness evaluation) process by avoiding a complex
process to train a classifier.

4 Design of Experiments

A set of experiments have been conducted to examine the performance of PSOFC-
Pair and PSOFCArry on seven binary datasets (see Table 1) chosen from the
UCI machine learning repository [4]. The seven datasets are chosen to have dif-
ferent numbers of features and instances. On each dataset, 70% of the instances
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Table 2. Operator Selection

PSOFCPair PSOFCArry
Interval Operator Interval Operator
[0.5, 0.625) + [0.0, 0.25) +
[0.625, 0.7) - [0.25, 0.5) -
[0.7, 0.825) * [0.5, 0.75) *
[0.825, 1] / [0.75, 1] /

are randomly selected as training examples and the rest 30% are used as the
testing set, following the settings in [17] to make a fair comparison.

The parameters in PSOFCPair and PSOFCArry are set as follows [2]: w =
0.7298, c1 = c2 = 1.49618. The swarm size is 30 and the fully connected topology
is used. The maximum number of iterations is 100. θ in both PSOFCPair and
PSOFCArry is set as 0.5, which means each original feature has 50% probabil-
ity to be selected for constructing the new high-level feature. Four commonly
used function operators in GP for feature construction [11] are used in both
PSOFCPair and PSOFCArry, which are “+”, “-”, “*” and “/” (protected divi-
sion). The operators are selected according to which interval the corresponding
position value falls into and details can be seen in Table 2. The four operators
are considered equally important. Therefore, the four intervals in PSOFCPair
or PSOFCArry have the same range to ensure that the four operators have the
same probability to be selected.

Both PSOFCPair and PSOFCArry are run 50 independent times on each
dataset. To test the generality of the constructed feature, three different learning
algorithms are used to test its classification performance on the testing set.
The three classifiers are DT, KNN with K = 5 and NB. To further test the
performance of PSOFCPair and PSOFCArry, they are compared with the first
and the only existing PSO based feature construction algorithm (PSOFC) [17].

5 Results and Discussions

The results of PSOFCPair and PSOFCArry are shown in Tables 3 and 4. In
the tables, “Org” means all the original features are used for the classification.
“CF” means only the single constructed feature is used for the classification.
“OrgCF” means the constructed feature and the original features are combined
together for classification. “#Fea” represents the total number of features in
the datasets. “Best”, “Avg” and “Std” represent the best, the average and the
standard deviation of the testing classification performance obtained from the
50 runs.

5.1 Results of the PSOFCPair

As can be seen from Table 3, by using only the single constructed feature for
classification, DT, KNN and NB can achieve similar or better classification per-
formance than using all the original features on a few datasets only. The results
suggest that the simple pair representation in PSO has potential to construct
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Table 3. Result of PSOFCPair

Dataset #Fea Method
DT KNN NB

Best Avg Std Best Avg Std Best Avg Std

Australian 14
Org 85.99 70.05 85.51
CF 77.29 65 4.13 74.4 61.99 4.28 59.9 53.93 1.84
OrgCF 85.99 85.99 0 74.88 69.05 3.01 85.99 85.34 45.1E-2

WBCD 30
Org 92.98 92.98 90.64
CF 95.32 86.5 8.66 95.32 85.94 9.06 61.99 61.41 8.26E-2
OrgCF 97.08 93.2 92.1E-2 95.91 92.13 4.12 90.64 90.64 0

Ionosphere 34
Org 86.67 83.81 28.57
CF 84.76 75.47 5.65 84.76 73.45 5.66 84.76 80.86 2.36
OrgCF 89.52 86.88 93.8E-2 89.52 84.7 1.57 28.57 28.57 0

Sonar 60
Org 71.43 76.19 53.97
CF 69.84 53.14 7.7 65.08 53.05 7.23 47.62 47.62 0
OrgCF 73.02 71.11 1.42 79.37 66.25 11.9 53.97 53.97 0

Musk1 166
Org 71.33 83.92 42.66
CF 67.13 58.95 4.17 64.34 55.37 5.09 60.14 59.38 36.6E-2
OrgCF 75.52 71.41 58.7E-2 85.31 62.69 13.7 72.73 72.73 0

Hillvalley 100
Org 62.09 56.59 52.2
CF 83.79 54.56 7.99 83.52 53.38 7.84 47.8 47.8 0
OrgCF 85.99 63.47 5.84 83.79 53.56 7.95 52.2 52.2 0

Madelon 500
Org 76.79 70.9 49.49
CF 57.31 50.98 2.34 54.23 50.27 1.69 49.49 49.49 0
OrgCF 77.69 76.79 16E-2 72.44 52.24 5.85 55.51 55.51 1.84E-2

a high-level feature to provide useful information for classification and using
only the single constructed needs much less computational time than using the
original full set of features. However, the limitation of PSOFCPair is that a fea-
ture and its operator share the same value to determine whether the feature is
selected or not and which operator is chosen. During the evolution, the shared
dimension may not reach the ideal value for both feature and operator selection.
Therefore, only using the constructed feature could not improve the classifica-
tion performance on most cases, but adding it to the original feature set may
increase the classification accuracy.

According to Table 3, by adding the constructed feature to the original fea-
ture set, the classification performance of all the three classification algorithms
(DT, KNN and NB) can be increased. Specifically, the average accuracy of DT is
increased on four of the seven datasets and similar on the other three datasets.
The best accuracy is higher than using only the original features on six of the
seven datasets and the same on one dataset. The performance of using both the
constructed feature and the original features on KNN and NB shows a similar
pattern to DT, where the classification performance is increased in most cases.
These results indicate that adding the constructed feature can provide useful
information to the feature set to achieve better classification performance than
using only the original features, but the computational time cost by adding only
one feature can be safely ignored. Although there is a preprocessing step to con-
structed the new feature, its computation time is very short (details can be seen
in Section 5.3).

5.2 Results of PSOFCArry

According to Table 4, it can be seen that when using only the single constructed
high-level feature for classification, the best classification performance of DT is
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Table 4. Results of PSOFCArry

Dataset #Fea Method
DT KNN NB

Best Avg Std Best Avg Std Best Avg Std

Australian 14
Org 85.99 70.05 85.51
CF 88.41 85.05 1.63 87.44 66.59 17.3 76.33 55.21 5.02
OrgCF 87.92 85.87 98.8E-2 87.92 79.54 4.17 88.89 86.59 67.4E-2

WBCD 30
Org 92.98 92.98 90.64
CF 95.91 91.47 2.36 95.91 90.98 2.49 61.4 61.4 0
OrgCF 97.08 93.45 1.07 95.91 92.65 1.5 90.64 90.64 0

Ionosphere 34
Org 86.67 83.81 28.57
CF 83.81 76.71 4.79 85.71 76.32 5.07 87.62 82.32 1.56
OrgCF 92.38 85.96 3.27 87.62 84.46 1.18 28.57 28.57 0

Sonar 60
Org 71.43 76.19 53.97
CF 73.02 63.33 6.14 74.6 61.27 5.45 47.62 47.62 0
OrgCF 76.19 68.67 4.17 80.95 71.08 6.42 53.97 53.97 0

Musk1 166
Org 71.33 83.92 42.66
CF 67.13 58.77 5.29 67.13 57.86 4.39 60.14 59.36 43.5E-2
OrgCF 73.43 71.32 58.6E-2 84.62 66.99 12.7 72.73 72.73 0

Hillvalley 100
Org 62.09 56.59 52.2
CF 99.45 96.98 1.71 99.45 96.87 1.85 50 47.86 31.6E-2
OrgCF 99.45 97.15 1.51 76.92 62.86 5.34 52.47 52.21 3.81E-2

Madelon 500
Org 76.79 70.9 49.49
CF 64.36 57.28 4.16 58.33 53.33 2.34 49.49 49.49 0
OrgCF 77.05 76.77 24.6E-2 70.9 66.4 8.08 49.49 49.49 0

better than when using all the original features on four of the seven datasets. For
example, on the Hillvalley dataset, the classification performance of DT using all
the 100 original features is 62.09%. By using only the single constructed features,
DT achieved the average classification performance of 96.98% and the best accu-
racy of 99.45%. The best classification performance of KNN and NB using only
the constructed feature is better than using all the original low-level features
on most datasets. The results suggests that PSOFCArry can effectively evolve a
number of original low-level features and function operators to construct a single
high-level feature, which is possible to achieve better classification performance
than using all the original features.

According to Table 4, it can be observed that when combing the single con-
structed feature with the original features, the best classification performance
of DT is better than using only the original features on all the seven datasets.
The average classification accuracy is similar or better than using only the orig-
inal features on almost all datasets. KNN and NB shows a similar patter to
DT, which is the average accuracy is better or similar on most datasets and the
best accuracy is higher than using only the original features on most cases. The
results suggest that adding the constructed feature to the original features brings
useful information to the feature set, which can help a classification algorithm
(DT, KNN or NB) to achieve better classification performance than using only
the original features.

5.3 Further Comparisons

Table 5 shows of the classification performance of PSOFCPair, PSOFCArray and
PSOFC using DT as the classification algorithm, where“CF” means DT using
only the constructed high-level feature and “CFOrg” means the combination of
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Table 5. Results of PSOFCPair,PSOFCArray and PSOFC using DT

Feature Method
Australian WBCD Ionosphere Sonar

Ave±Std Test Ave±Std Test Ave±Std Test Ave±Std Test

CF

PSOFC 85.35±1.13 93.31±1.07 81.01±2.85 63.11±2.26
PSOFCPair 65±4.13 - 86.5±8.66 - 75.47±5.65 - 53.14±7.7 -
PSOFCArray 85.05±1.63 = 91.47±2.36 - 76.71±4.79 - 63.33±6.14 =

Method
Musk1 Hillvalley Madelon

Ave±Std Test Ave±Std Test Ave±Std Test
PSOFC 65.96±3.24 85.93±12.5 53.97±4.26E-14
PSOFCPair 58.95±4.17 - 54.56±7.99 - 50.98±2.34 -
PSOFCArray 58.77±5.29 - 96.98±1.71 + 57.28±4.16 +

Feature Method
Australian WBCD Ionosphere Sonar

Ave±Std Test Ave±Std Test Ave±Std Test Ave±Std Test

CFOrg

PSOFC 85.93±66E-2 93.81±1.1 86.55±3.13 71.43±2.8E-14
PSOFCPair 85.99±9.9E-14 = 93.2±92.1E-2 - 86.88±93.8E-2 = 71.11±1.42 =
PSOFCArray 85.87±98.8E-2 = 93.45±1.07 = 85.96±3.27 = 68.67±4.17 -

Method
Musk1 Hillvalley Madelon

Ave±Std Test Ave±Std Test Ave±Std Test
PSOFC 71.54±3.09 85.63±12.4 76.79±8.53E-14
PSOFCPair 71.41±58.7E-2 = 63.47±5.84 - 76.79±16E-2 =
PSOFCArray 71.32±58.5E-2 = 97.15±1.51 + 76.77±24.6E-2 =

the constructed feature and original features. “Test” shows the results of the
statistical significant T-test (Z-test) comparing the classification performance
achieved by PSOFC and PSOFCPair(or PSOFCArray). The results of using
KNN or NB as the classification algorithm show a similar patter to DT and the
results are not listed here due to the page limit. The average computational time
(in seconds) of the three algorithms in each run is shown in Table 6.

According to Table 5, when DT using only the constructed feature for clas-
sification, PSOFC achieved better performance than PSOFCPair in all cases,
better than PSOFCArray in three cases and worse than PSOFCArray in two
cases. When using the combination of the constructed feature and the origi-
nal features, PSOFC achieved slightly better performance than PSOFCPair and
similar performance to PSOFCArray. The main reason is that PSOFC using a
inner loop for operator selection, which conducts an exhaustive search of all the
candidates operators to find the optimal operator for each feature, can obtain
a better set of operators. PSOFCPair has a potential limitation due to the use
of one dimension for both features and operators. However, the inner loop in
PSOFC is time-consuming. From Table 6, it can be observed that the time
used by PSOFCPair and PSOFCArray is around 100 times shorter than that of
PSOFC. The main reason is that the inner loop in PSOFC causes a much larger
number of evaluations than PSOFCPair and PSOFCArray. The operators in
PSOFCPair and PSOFCArray are evolved by PSO itself and not need extra cal-
culations. Since the dimensionality of PSOFCArray is higher than PSOFCPair,
the computational time used by PSOFCArray is slightly larger than PSOFCPair,
but still around 100 times shorter than PSOFC.

Tables 5 and 6 suggest that the new representations in PSOFCPair and
PSOFCArray can effectively evolve operators to construct a new high-level fea-
ture to achieve similar classification performance to PSOFC, but use significantly
shorter computational time.
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Table 6. Computation Time used by PSOFCPair,PSOFCArray and PSOFC

Method Australian Ionosphere WBCD Hillvalley Musk1 Semeion Madelon
PSOFCPair 94.6E-2 84.2E-2 54.4E-2 41.6E-2 1.46 2.68 18.8
PSOFCArray 93.3E-2 88E-2 59E-2 44.5E-2 1.93 3.45 25.6
PSOFC 31.4 65.4 47.1 65.6 7.2E2 8.2E2 6.1E4

6 Conclusion and Future Work

The goal of this research was to develop a new representation scheme in PSO for
feature construction to construct a high-level feature to improve the classification
performance. The goal was successfully achieved by proposing two new repre-
sentations, which are the pair representation (PSOFCPair) and the array rep-
resentation (PSOFCArray). PSOFCPair and PSOFCArray were examined and
compared with the first and only existing PSO based feature construction algo-
rithm (PSOFC) on seven benchmark datasets. The experimental results show
that PSOFCPair increased the classification performance in most cases by adding
the constructed feature to the original feature set, but it has a limitation because
of using one dimension in the particle for both the feature selection and opera-
tor selection. By using a larger dimensionality, PSOFCArray could increase the
classification performance by using only the constructed feature and increase the
classification performance in almost all cases by adding the constructed feature
to the original feature set. PSOFCArray achieved similar classification perfor-
mance to PSOFC, but used significantly shorter computational time.

This paper is the first work that uses PSO to automatically select original
low-level features and function operators for feature construction. In the future,
we will further investigate the use of PSO for feature construction and compare
its performance with GP based feature construction approaches.

References

1. Azevedo, G., Cavalcanti, G., Filho, E.: An approach to feature selection for
keystroke dynamics systems based on PSO and feature weighting. In: IEEE
Congress on Evolutionary Computation (CEC 2007), pp. 3577–3584 (2007)

2. Clerc, M., Kennedy, J.: The particle swarm- explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58–73 (2002)

3. Engelbrecht, A.P.: Computational intelligence: an introduction, 2. ed. Wiley (2007)
4. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
5. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Con-

ference on Neural Networks. 4, 1942–1948 (1995)
6. Krawiec, K.: Genetic programming-based construction of features for machine

learning and knowledge discovery tasks. Genetic Programming and Evolvable
Machines 3(4), 329–343 (2002)

7. Liu, H., Motada, H. (eds.): Feature extraction, construction and selection: A data
mining perspective. Kluwer Academic Publishers, Norwell (1998)

8. Marinakis, Y., Marinaki, M., Dounias, G.: Particle swarm optimization for pap-
smear diagnosis. Expert Systems with Applications 35(4), 1645–1656 (2008)



488 Y. Dai et al.

9. Muharram, M.A., Smith, G.D.: Evolutionary Feature Construction Using Informa-
tion Gain and Gini Index. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 379–388. Springer, Heidelberg
(2004)

10. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans-
actions on Evolutionary Computation 16(5), 645–661 (2012)

11. Neshatian, K.: Feature Manipulation with Genetic Programming. PhD thesis,
Victoria University of Wellington, Wellington, New Zealand (2010)

12. Neshatian, K., Zhang, M., Johnston, M.: Feature Construction and Dimension
Reduction Using Genetic Programming. In: Orgun, M.A., Thornton, J. (eds.) AI
2007. LNCS (LNAI), vol. 4830, pp. 160–170. Springer, Heidelberg (2007)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

14. Unler, A., Murat, A.: A discrete particle swarm optimization method for fea-
ture selection in binary classification problems. European Journal of Operational
Research 206(3), 528–539 (2010)

15. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: A multi-objective par-
ticle swarm optimisation for filter based feature selection in classification problems.
Connection Science (2012)

16. Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection
in classification: A multi-objective approach. IEEE Transactions on Cybernetics
43(6), 1656–1671 (2013)

17. Xue, B., Zhang, M., Dai, Y., Browne, W.N.: PSO for feature construction and
binary classification. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, GECCO 2013, 137–144 (2013)


	New Representations in PSO for Feature Construction in Classification
	1 Introduction
	1.1 Goals

	2 Background
	2.1 Particle Swarm Optimisation (PSO)
	2.2 Related Work on Feature Construction
	2.3 PSO for Feature Manipulation

	3 Proposed Approaches
	3.1 Pair Representation
	3.2 Array Representation
	3.3 Pesuode Code of the Proposed Approaches

	4 Design of Experiments
	5 Results and Discussions
	5.1 Results of the PSOFCPair
	5.2 Results of PSOFCArry
	5.3 Further Comparisons

	6 Conclusion and Future Work
	References


